تخمین ضریب بهره وری ماشین حفر تونل(tbm) با استفاده از شبکه عصبی مصنوعی

Authors

حمیدرضا نجاتی

دانشجوی دکترای گروه مهندسی مکانیک سنگ دانشگاه تربیت مدرس مرتضی احمدی

دانشیار دانشگاه تربیت مدرس

abstract

پیش بینی سرعت پیشروی ماشین های حفر تونل ،به منظور تعیین برنامه زمانی و برآورد هزینه های اجرایی در پروژه های تونل سازی با حفر مکانیزه،از اهمیت زیادی برخوردار است.برای این منظور لازم است تا ضریب بهره وری ماشین حفر تونل مشخص شده تا بر اساس آن سرعت پیشروی ماشین تعیین شود.اگر چه روابط تجربی متعددی د راین زمینه ارائه شده اند ولی این روابط از دقت بالایی برخوردار نیستند.هدف از انجام این مطالعه تعیین ضریب بهره وری ماشینtbm باز،با استفاده از شبکه عصبی مصنوعی می باشد.برای این منظور مجموعه ای از داده های مربوط به تونل سازی با ماشین tbm باز ،جمع آوری شده و شبکه ای با ورودیهای متفاوت تک محوری فشاری،تنش قائم،فاکتور جهت درزه،نیروی نفوذ تیغه و شاخص کیفیت سنگ  بارتن(q) با خروجی ضریب بهره وری ماشین حفر تونل طراحی شده است.از آنجایی که پارامترهای ورودی شبکه،ارتباط بسیار مناسبی با ضریب بهره وری ماشین حفر تونل دارند شبکه عصبی طراحی شده قادر است با دقت بسیار بالا ضریب بهره وری ماشین حفر تونل را پیش بینی نماید.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین ضریب بهره وری ماشین حفر تونل(TBM) با استفاده از شبکه عصبی مصنوعی

پیش بینی سرعت پیشروی ماشین های حفر تونل ،به منظور تعیین برنامه زمانی و برآورد هزینه های اجرایی در پروژه های تونل سازی با حفر مکانیزه،از اهمیت زیادی برخوردار است.برای این منظور لازم است تا ضریب بهره وری ماشین حفر تونل مشخص شده تا بر اساس آن سرعت پیشروی ماشین تعیین شود.اگر چه روابط تجربی متعددی د راین زمینه ارائه شده اند ولی این روابط از دقت بالایی برخوردار نیستند.هدف از انجام این مطالعه تعیین ضر...

full text

تخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی

انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...

full text

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

full text

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

full text

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  GF(انرژی مخصوص شکس...

full text

تخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی

    در سال‌های اخیر با بهره‌گیری از روش‌های مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونه‌های سنگی مورد بررسی قرار گرفته است. اغلب گسیختگی‌های رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ می‌باشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگی‌ها در حفریات سطحی و زیرزمینی از اهمیت ویژه‌ای برخوردار می‌باشد. بررسی جامع دستاوردهای علمی‌در خصوص تعیین سختی برش...

full text

My Resources

Save resource for easier access later


Journal title:
فصلنامه زمین شناسی محیط زیست

جلد ۴، شماره ۱۲، صفحات ۶۳-۷۲

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023